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I. Introduction

What has infinity to do with faith? Although the connections are not obvious, they
are hinted at both by writers of scripture and mathematics. For example, the writer of
Ecclesiastes declares: “He has put eternity into man’s mind . . . 7 Likewise we read in
Plato’s Republic [VII, 527], “The knowledge at which geometry aims is the knowledge of the

“ [Mathematical inquiry] lifts the human mind into

eternal.” Hermann Weyl agrees,
closer proximity with the divine than is attainable through any other medium. Mathematics
18 the science of the infinite, its goal the symbolic comprehension of the infinite with human,
that is finite, means.”!

The infinite has intrigued me ever since my ninth grade math teacher proved that
0.999 ... = 1.2 Although my thoughts have matured somewhat since that time, I still find
the concept just as perplexing. In fact, the more I read and think about infinity and how
it relates to questions of faith, the more I question my ability “to know” because I become
increasingly aware of the limitations of my own mind. On the other hand, the very activity
of contemplating the infinite and endeavoring to understand its connections to the world
outside of me and the faith within me, serves me by clarifying my position in the scheme of
things. Thus in grappling with the infinite, the mind is at once humbled by its inability to

fully understand, while enriched by the very attempt to understand.

David Hilbert, one of the great mathematicians of the early twentieth century, exclaimed:

The infinite! No other question has ever moved so profoundly the spirit of man;
no other idea has so fruitfully stimulated his intellect; yet no other concept stands
in greater need of clarification than that of the infinite . . .3

IPhillip J. Davis, Reuben Hersh, The Mathematical Experience, Boston: Birkhauser, 1981, p. 7.

2The proof is simple. Just let N = 0.999.... Then 10N = 9.999.... Subtracting the first equation from
the second leaves 9N =9, so N = 1.

3Eli Maor, To Infinity and Beyond, Boston: Birkhauser, 1987, p. 15.



We begin to appreciate the difficulty of clarification already in noting the definitions
found in the American Heritage dictionary. The first is: “Having no boundary or limits.”
However, this is easily seen to be inadequate; an ant crawling on a globe encounters neither
boundaries nor limits, yet we surely do not consider the surface of a globe as being infinite
in extent. Other definitions include being immeasurably large, having endless duration, and
the mathematical definition given by Georg Cantor which we discuss later.

We begin with a brief historical overview of the concept of the infinite, especially concern-
ing its relationship to God and the universe. We then discuss the definition of infinity given
by Cantor, and his underlying religious beliefs that caused him to believe in the existence
not only of infinite numbers, but also of an infinite universe and an Absolute Infinite which
he associated with the mind of God. We end with topics related to the infinite including
the way we view our earth, our mortality, the existence of absolute truth, and the infinity of
God.

II. Historical Survey

Anaximander (611-547 B.C.), the Greek philosopher and astronomer, introduced infin-
ity (especially its use as a divine modifier) to the Western world. He considered the cause
of the universe to be “to apeiron,” which involved being indeterminate, unbounded, inex-
haustible, and everlasting. As R. Rucker explains, “Apeiron was a negative, even pejorative
word . . . [It] need not only mean infinitely large, but can also mean totally disordered,
infinitely complex, subject to no finite determination.”* Pythagoras, who accepted nothing
more complicated than the natural numbers ({1,2,3, . . . }) and discrete atoms, rejected
the notion altogether. Likewise Plato, who associated apeiron with imperfection, believed
the Ultimate Good must be finite and definite.?

Although Aristotle believed that the First Unmoved Mover had infinite power, his was
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also a finite world since, in his words, “ . . . being infinite is a privation, not a perfection
but the absence of a limit . . . "% However Aristotle also recognized apeiron in the endless
duration of time and the divisibility of space. Aristotle solved the dilemma by claiming that
time and space were potentially infinite (a finite collection which gets arbitrarily large) as
opposed to an actual infinite which exists as a finished thing. As such, Aristotle was the
first to clearly differentiate between two ways of thinking about infinity. As A.W. Moore

explains,

4Rudy Rucker, Infinity and the Mind, Boston: Bantam, 1982, p. 3.

5David L. Balas, O. A. Cist, “A Thomist View on Divine Infinity,” In Infinity, ed. by Daniel O. Dahlstrom,
David T. Ozar, and Leo Sweeny, S.J. Volume VL, Proceedings of the American Catholic Philosophical
Association. Washington, DC: The Catholic University of America, 1981, p. 91.

SRudy Rucker, p. 3.



Two clusters of concepts [of the infinite] dominate, and much of the dialectic in
the history of the topic has taken the form of oscillation between them. Within
the first cluster we find: boundlessness; endlessness; unlimitedness; immeasura-
bility; eternity; that which is such that, given any determinate part of it, there is
always more to come; that which is greater than any assignable quantity. Within
the second cluster we find: completeness; wholeness; unity; universality; abso-
luteness; perfection; self-sufficiency; autonomy. The concepts in the first cluster
are more negative and convey a sense of potentiality. . . . The concepts in the
second cluster are more positive and convey a sense of actuality.”

The last influence Greek philosophy would have occurs over 500 years later. Plotinus
(205-270 A.D.), who ushered in Neoplatonism, believed in an underlying existence which is
distinct from — yet sustains — the world we experience. This underlying reality was the infinite
God.® Thus Plotinus broke new ground in adopting the belief that God was infinite (in the

second sense described above); hence for the first time associating infinity with perfection.

Whereas the Greek thinkers were reluctant to associate infinity with divine perfection,
some of the early Christian writers did so readily. These include Philo, Irenaeus, Clement
of Alexandria, and Gregory of Nyssa — who was probably the first Christian thinker to
expound the infinity of God.? Possibly this difference in thought was tied to their respective
concepts of time. The Greeks thought of time as being circular and thus saw themselves
as being entrapped by it. Eternity, for them, was qualitatively distinct from time — it was
timelessness. In contrast, the primitive Christian church inherited from Judaism the belief

that time was like an upward-sloping line — moving towards a consummation. Eternity is an

attribute of God, and “our time” is but a portion of eternity — of God’s time.'?

Augustine, who sought to integrate Neoplatonism with Christianity, argued for an infinite
God who could think infinite thoughts. In his words,

Every number is defined by its own unique character, so that no number is
equal to any other. They are all unequal to one another and different, and the
individual numbers are finite but as a class they are infinite. Does that mean
that God does not know all numbers, because of their infinity? No one could be
insane enough to say that.

Never let us doubt, then, that every number is known to him ‘whose under-
standing cannot be numbered’. Although the infinite series of numbers cannot
be numbered, this infinity of numbers is not outside the comprehension of him
‘whose understanding cannot be numbered’. And so, if what is comprehended in
knowledge is bounded within the embrace of that knowledge, and thus is finite,

"A. W. Moore, The Infinite, New York: Routledge, 1991, p. 1-2.

8Ibid., p. 45.

9David L. Balas, O. Cist, p. 92.

100scar Cullmann, Christ and Time, London: SCM Press LTD, 1952, p. 51-65.



it must follow that every infinity is, in a way we cannot express, made finite to
God, because it cannot be beyond the embrace of his knowledge.!!

Augustine’s influence notwithstanding, the next eight centuries did little to further the
concept of an infinite God. This may be because the Biblical record itself, while speak-
ing of God’s power (Genesis 17:1; John 1:3), eternity (Genesis 21:33; Deuteronomy 32:40;
Job 36:26), omnipresence (Deuteronomy 4:39; Psalms 139:7-12; Jeremiah 23:24), transcen-
dence of location (Job 11:7-8), otherness from creation (Is 46:9), and transcendence from
human understanding (Job 36:26; Isaiah 55:8-9; Romans 11:33; Ephesians 3:8), never states
explicitly that God is infinite. (However, see Psalms 147:5.)

Until the 13th century, divine infinity was a property not so much of God’s essence as
of His relationship to creation. Augustine for example uses the word “infinitum” inter-
changeably with God’s eternity, omnipotence, incomprehensibility by human minds, and
transcendence of location.!?

It was Thomas Aquinas who first argued that God’s nature was infinite in and of itself
and not merely in relation to the created world. Aquinas asserted (roughly) that it is matter
which limits a being, and so a perfect being which is subsistent in itself (not depending on
matter) was then necessarily infinite. So God’s infinite nature is inextricably linked to His
perfection. Interestingly, Duns Scotus, who followed closely on the heels of Aquinas, agreed
that God was infinite, but his reasoning went in the reverse direction. Aquinas maintained
that since God was infinite in entity, it followed that His intellect, power and will were then
necessarily infinite. Scotus, on the other hand, argued that the infinity of God’s will and
intellect implied that the divine entity was infinite as well.!3

Another intriguing argument for God’s infinite nature provided by Aquinas is that our
“intellect . . . extends to the infinite in understanding. . . . But this ordination of the
intellect would be in vain unless an intelligible existed.”!*

On the other hand, Aquinas believed that the world was finite. We find in the Book of
Wisdom, “Thou hast ordered all things in measure, and number and weight.”!> So Aquinas
concludes,

. every kind of multitude must belong to a species of multitude. Now the
species of multitude are to be reckoned by the species of numbers. But no species

U Michael Hallett, Cantorian set theory and the limitation of size, Oxford: Clarendon, 1984, p. 35-36.

12Leo Sweeney, Presidential Address: Surprises in the History of Infinity from Anaximander to George
Cantor. In Infinity, ed. by Daniel O. Dahlstrom, David T. Ozar, and Leo Sweeny, S.J. Volume VL, Pro-
ceedings of the American Catholic Philosophical Association. Washington, DC: The Catholic University of
America, 1981, p. 8.

13Tbid., p. 11-16.

4David L. Balas, O. Cist, p. 94.

15Michael Hallett, p. 22.



of number is infinite, for every number is multitude measured by one. Hence it
is impossible that there be an actually infinite multitude, either absolutely or
accidentally. Furthermore, multitude in the world is created, and everything
created is comprehended under some definite intention of the Creator; for no
agent acts aimlessly. Hence everything created must be comprehended under a
certain number. Therefore it is impossible for an actually infinite multitude to
exist, even accidentally.!®

Consequently, Aquinas infers that mathematics must concern itself only with the potentially
infinite. For God represents the only actual infinity, and God is not an object of mathematical
study.

As the scientific revolution transformed the way the world was viewed, the notion of
the infinite was changed as well. Descartes reflects the traditional view (where infinity is

associated with perfection) when he writes,

My notion of the infinite is somehow prior to that of the finite. . . . For how
would it be possible for me to know that I doubt and that I desire — that is, that
I lack something and am not all perfect — if I did not have in myself any idea of
a being more perfect than my own. . . .7

Yet less than fifty years later, John Locke states,

Finite and infinite seem to me to be looked upon by the mind as the modes of
quantity, and to be attributed primarily in their first designation to those things
which have parts and are capable of increase and diminution, by the addition or
subtraction of any the least part. . . . It is true that we cannot but be assured,
that the great God, of whom and from whom are all things, is incomprehensibly
infinite; but yet when we apply to that first and supreme Being our idea of
infinite, in our own weak and narrow thoughts, we do it primarily in respect of
his duration and ubiquity; and I think, more figuratively, to his power, wisdom
and goodness.!®

D. Schweickart emphasizes,

The new element, of course, is the primary association of infinity with non-
metaphysical, purely mathematical, quantity. To be sure, the mathematical as-
pect of infinity has been recognized at least since Zeno, but by the late seven-
teenth century it has begun to appear to many that this is the essential nature of
infinity, that other usages are only metaphorical. This shift in meaning is hardly
surprising. As Husserl has emphasized, the decisive conceptual innovation of
Galilean science is the quantification of quality.!®

16Tbid., loc. cit.

"David Schweickart, A Marxist Perspective on the Human Person. In Infinity, ed. by Daniel O. Dahlstrom,
David T. Ozar, and Leo Sweeny, S.J. Volume VL, Proceedings of the American Catholic Philosophical
Association. Washington, DC: The Catholic University of America, 1981, p. 100.

18Thid., loc. cit.

9Tbid., loc. cit.



Even when the notion of the infinite was narrowed to the merely quantitative by the
scientific community, it was still not a precisely defined term. Thus the men who ushered in
the scientific revolution had their problems coming to grips with infinity as well. For example,
the notion of the “infinitesimal” — a quantity larger than zero, but smaller than any finite
number — was used extensively and successfully in the effort to describe mathematically the
motion of the planets. Yet no one could explain — or apparently quite understand — what an
infinitesimal was. This intellectual “fumbling with the ball” was not lost on Bishop Berkley,
who in 1734 entitled his book,

The Analyst, Or A Discourse Addressed to an Infidel Mathematician. Wherein It
is examined whether the Object, Principles and Inferences of the modern Analysis
are more distinctly conceived, or more evidently deduced, than Religious Mysteries

and Points of Faith. “First cast out the beam out of thine own Eye; and then
shalt thou see clearly to cast out the mote out of thy brother’s Fye.”

(“The Infidel” was probably Edmund Halley who helped Newton publish the Principia and
also is said to have persuaded a friend of Berkeley’s of the “inconceivability of the doctrines
of Christianity.”?")

The use of infinitesimals was replaced by the limit process which is still used today in the
calculus. However the mystery surrounding the infinite — especially concerning the existence
and properties of the actual infinite as opposed to Aristotle’s potential infinite — was not yet
solved. Even Gauss (1777-1855), the prince of mathematics, wrote to a friend,

As to your proof, I must protest most vehemently against your use of the infinite
as something consummated, as this is never permitted in mathematics. The
infinite is but a figure of speech; an abridged form for the statement that limits
exist which certain ratios may approach as closely as we desire, while other
magnitudes may be permitted to grow beyond all bounds. . . .

. . . No contradictions will arise as long as Finite Man does not mistake the

infinite for something fixed, as long as he is not led by an acquired habit of the
mind to regard the infinite as something bounded.?!

It took the mind of Georg Cantor (1845-1918) to finally unravel the infinite knot. His
discoveries were truly revolutionary and initially met with strong resistance from the math-
ematical community. Particularly strong was the attack from his former teacher, Leopold
Kronecker (1823-1891) who did not accept any mathematics which was not directly based on
the integers. (Kronecker’s most famous quote is: “God made the integers; all the rest is the
work of man.”) Kronecker may also have been jealous of his former student who was “slaying

7

his ten-thousands.” Whatever the case, the opposition led to deep bouts of depression in

20Phillip J.Davis, Reuben Hersh, p. 325.
21Tobias Dantzig, Number: The Language of Science, New York: Macmillan, 1954, p. 211-212.



Cantor’s later life, and he eventually died in a mental institution. However, the resistance
was not unexpected; even Cantor, upon making one discovery exclaimed, “I see it, but I
don’t believe it.”

However Cantor’s corner was by no means empty. Hilbert was an enthusiastic propo-
nent who claimed that Cantor’s theory was “the most astonishing product of mathematical
thought, one of the most beautiful realizations of human activity in the domain of the purely
intelligible.”?? To the critics he responded, “No one shall expel us from the paradise which
Cantor has created for us.” Bertrand Russell said Cantor’s work was “probably the greatest
achievement of which our age can boast.”?

It is to Cantor’s discoveries that we now turn.

IIT. Cantor
Cantor’s discoveries concerning the infinite are tied in with his development of set theory.

A set is just a collection of “things.” Cantor described a set as a Many that allows itself to

t24

be thought of as a One. He maintained that a set“* — even a set with an infinite number of

elements — must be regarded as a totality. In an essay appearing in 1883 Cantor wrote,

It is traditional to regard the infinite as the indefinitely growing or in the closely
related form of a convergent sequence, which it acquired during the seventeenth
century. As against this I conceive the infinite in the definite form of something
consummated, something capable not only of mathematical formulations, but of
definition by number. This conception of the infinite is opposed to traditions
which have grown dear to me, and it is much against my own will that I have
been forced to accept this view. But many years of scientific speculation and
trial point to these conclusions as to a logical necessity, and for this reason I

22Morris Kline, Mathematical Thought from Ancient to Modern Times, New York: Oxford University
Press, 1972, p. 1003.

23Eli Maor, p. 63.

24A brief explanation of some mathematical terminology may be helpful here. As already mentioned in
the text, a set is just a collection of things. We often use parenthesis to identify together the members of a
set. For example, let S be the set {3, 5, 6, 7, 9}. 7 is said to be an element of S. One set is a subset of a
second set if every member of the first set is also in the second set. If the first set leaves out some members
of the second set, then it is called a proper subset. For example, the set T = {3, 6, 9} is a proper subset of S.

Sets can include things other than numbers. Consider the set of all the names of days of a week, or the
set of all letters in the alphabet, or the set of people over 100 years old. The set of people over two hundred
years old has no elements in it. The set with no elements is called the empty set and is denoted {}.

We call the set of numbers represented by the number line the real numbers, denoted by R. The interval
[a, b] denotes the set of real numbers between (and including) a and b. An important subset of the real
numbers is the set of counting numbers or natural numbers. This is the set consisting of 1, 2, 3, etc. We let
N represent this set of numbers, so we can write N = {1, 2, 3, . . . }. The integers is the set of all natural
numbers together with their negatives and the number zero. The set of all the possible ratios of integers
(like 2/3) gives rise to the rational numbers. The rational numbers can, in turn, be enlarged to the set of
algebraic numbers by throwing in numbers like v/3 and /8. Finally, by filling in all the remaining holes in
the number line with numbers like 7 ~ 3.1415926 . . ., one obtains the real numbers again.



am confident that no valid objections could be raised which I would not be in
position to meet.?®

Thus Cantor accepted the notion of the actual infinite whereas the mathematical com-
munity to that point had never been more daring than to accept Aristotle’s potential infinite.
In fact, Cantor believed that there was no essential difference between the potential infinite
and the corresponding actual infinite. He reasoned,” . . . in truth the potentially infinite
has only a borrowed reality, insofar as a potentially infinite concept always points towards a
logically prior actually infinite concept whose existence it depends on.”?2¢

But wait! We are speaking of infinite sets — sets with an infinite number of elements
— without yet defining them. What precisely is an infinite set? It was Cantor’s genius in

answering this question that made possible his revolutionary discoveries.

Suppose a cave-dweller, living long before the invention of numbers, wanted to know
whether two rock piles contained the same number of rocks. With no aid from a numbering
system, the cave-dweller could resort to the most basic technique possible. The rocks from
one pile could be paired one-to-one with the rocks from the second pile. If no rocks remained
in either pile after the pairing, then the piles have an equal number of rocks. This is the
notion of a one-to-one (1-1) correspondence. A 1-1 correspondence is a one-to-one pairing of
elements from two sets which exhausts both sets. If there is a 1-1 correspondence between
two sets, we say the sets have equal cardinality. (The cardinality of a set is the number of
elements in the set.)

Mathematicians used one-to-one correspondences to compare sizes of sets long before
Cantor. However, in applying the technique to infinite sets, some apparent contradictions
arose. For example, it was long known that there is a natural 1-1 correspondence (z +— 2z)
between the intervals [0, 1] and [0, 2] even though the first is a subset of the second. Similarly,
there is a natural 1-1 correspondence (n — n?) between the sets {1, 2, 3, . . . } and {1, 4,
9,. .. }. Galileo noticed this paradox and concluded,

we can only infer that the totality of all numbers is infinite, and that the number
of squares is infinite . . . ; neither is the number of squares less than the
totality of all numbers, nor the latter greater than the former; and finally, the
attributes ‘equal,” ‘greater,” and ‘less,” are not applicable to infinite, but only to
finite quantities.?”

Cantor’s stroke of genius came in realizing that the paradox existed only because math-
ematicians were unwilling to let infinite sets enjoy different properties than finite sets. Since

25Tobias Dantzig, p. 211.
26Rudy Rucker, p. 3.
2"Rudy Rucker, p. 6.



this curious property that a set can be put into a 1-1 correspondence with a proper subset
of itself occurred only in sets which were considered infinite, Cantor used this property to
define infinite sets. That is, Cantor defined an infinite set to be a set which can be put into

a one-to-one correspondence with a (proper) subset of itself.

To get a better feel for this definition, let us consider some examples. Consider the set of
natural numbers N = {1, 2, 3, . . . } and one of its proper subsets {10001, 10002, 10003, . .
. }. Since there is a 1-1 correspondence between these sets, the set N of natural numbers is
infinite.?® We can also easily find a 1-1 correspondence between N and the set {10, 20, 30,
... }ortheset {1,4,9, ...}, so all these sets have the same cardinality.

Cantor then asked an obvious question: Are there any infinite sets which cannot be put
into a 1-1 correspondence with A7 A natural suspect was the set Q of all rational numbers
since between any two natural numbers there are infinitely many rational numbers. Cantor’s
intuition told him that there were more Rational numbers than Natural numbers.?® But
after repeatedly trying unsuccessfully to show that there were more rational numbers than
natural numbers, Cantor started having doubts. Eventually he reversed course and tried to
prove that the rational numbers have the same cardinality as the natural numbers.® At
some point he had a flash of brilliance. Here is what he did:

We make a table which contains all of the positive Rational numbers in the
following way: In the first row list all of the Natural numbers {1,2,3,4, ... }.
In the second row, list all of the Rational numbers with a 2 in the denominator:
{1/2, 2/2, 3/2, 4/2, . .. }. In the third row, do the same with 3s in the
denominators. Continuing in this way, all the positive rational numbers will be
included in the table. (Where will 17/25 be?)

Now, let’s get rid of the numbers which appear more than once. For example,
2/2 =1 and 1 is already in the first row, so we erase 2/2 from the second row.
Similarly erase 4/2, 6/2, 8/2, . ... Which numbers need to be erased from the
third row? from the fourth row?

We are almost done. We just have to show that there is a way to pair (i.e.,

28Interestingly, John Newton, who wrote Amazing Grace, expressed the eternity of heaven in the same
way that Cantor defined infinite sets.

29Part of the inherent intrigue of Mathematics is that sometimes one’s intuition is dead wrong. That leads
to neat new surprises and discoveries, which is why proofs are important. A proof verifies what the intuition
suggests. Mathematicians often work like the criminal justice system. First the police find the suspect that
they think is guilty. But then the prosecutor has to “prove” the guilt by convincing a skeptical jury.

30Typical graduate school problems leave it to the student to decide whether the proposition is true or
false. While in graduate school I walked clockwise through the hallways when trying to prove a statement
true, and counterclockwise while trying to show it to be false.



form a 1-1 correspondence) between the Rational Numbers left in the table and
the Natural numbers. The most obvious pairing would be to match 1 with 1,
2 with 2, 3 with 3, and so on. Unfortunately this “pairing” doesn’t work. For
even though all of the Natural numbers get paired, most of the Rational numbers
are left out. For example, nothing get paired with 1/2. Let’s try again. (Here
comes the brilliant idea.) Instead of going straight down one row of the table,
we instead form “rows” down the diagonals. So we will match 1 with 1, 2 with
2, 3 with 1/2, 4 with 3, 5 with 1/3, 6 with 4, 7 with 3/2, 8 with 2/3, 9 with 1/4,

and so on.

Thus, we have found a 1-1 correspondence between the positive Rational numbers and the

Natural numbers. So, by Cantor’s definition, the two sets have the same number of elements.

We have to give Cantor credit for the clever proof, but the downside is that we still
don’t know if there are infinite sets with different sizes. What would be another good set of
numbers to check? How about the Real numbers? That is what Cantor tried.

If Cantor’s previous proof was brilliant, his next one was a true stroke of genius! He proved
that there are more Real numbers than Natural numbers through a proof by contradiction.
That is, he started his proof by assuming that there was a 1-1 correspondence between the
sets, and then showed that this led to a contradiction. Here is the way the argument goes:

Assume it is possible to find a 1-1 correspondence between N and the Real num-
bers between 0 and 1. Now the decimal representation of any number between 0
and 1 will look like 0.z 222324 - - - where each x; represents a digit in the decimal
representation. So we try the following pairing:

1~ 0.xizdzieizt . ..

2,.2,.2,..2,.2
2 ~ O.$1$2$3$4$5 e

3103003023 0.3

4,4, 4 4 4
4 ~ 0.xzy05757s . . .

55,55 .5
o ~ 0.zjzsz37378 © . .

10



There is our proposed pairing — perfectly general. Does it work? We have used
all of the Natural numbers, have we used up all of the Real numbers between 0
and 17 Nope. I can show you a Real number between 0 and 1 which has not been
paired with any Natural number. It is the number y = 0.y1Y2y3y4y5 . . . Where y;
is chosen to be a digit different from z!. Let’s be specific: If 2! < 5, then we will
set y; = 8. If ¢ > 5, then we will set y; = 2. Since the decimal representation
of y differs from each of the Real numbers listed in at least one decimal place, it
must be different from all of them. Thus y is not on the list. By assuming that
there was a 1-1 correspondence, we have arrived at a contradiction. Hence the

initial assumption (that a 1-1 correspondence existed) was wrong.

Cantor thus concluded that the cardinality of R is greater than the cardinality of N.
Hence Cantor showed there were different sizes of infinity! But how many sizes were there?

A set with three elements, say {1, 2, 3} gives rise to 23 = 8 subsets: { }, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. Similarly a set with k elements has 2 subsets. In particular,
a finite set has more subsets than elements. Cantor proved this was true for infinite sets as
well. That is, no set can be put into a 1-1 correspondence with the set of all of its subsets.
Hence the collection of all subsets of N/ (which we denote by P(N)) has a different (greater)
cardinality than the set N itself. Let’s see why. We again use a proof by contradiction.

Let B be some set (finite or infinite). We now show that P(B) has a greater cardinality
than B.

If b € B, we can pair b with the subset {b}. Thus, Card(B) < Card(P(B)).
Now let’s assume that there is a 1-1 correspondence between B and P(B). We
will call this correspondence f. (So if 3 ~ {1,2}, then we write f(3) = {1,2}.)

Now, let A = {b : b ¢& f(b)}. (So, eg., if f(3) = {1,2}, then 3 € A. If
f(3) = {1,3}, then 3 ¢ A.) Then A is a subset of B, so A € P(B). Since

A € P(B), and since f is a 1-1 correspondence, there is some element of B, let’s

call it by, for which f(by) = A.

Now, Aristotelian logic tells us that either by € A or by & A. Let’s check to see
if either is possible.

If by € A, then by & f(by) (by defn of A), so by € A (since f(by) = A) which is a
contradiction.

If by & A, then by & f(by) (since f(by) = A). Since by & f(bo), then by € A (by
defn of A). This too is a contradiction. Hence neither possibility holds, which is

an absurdity.

11



Since the assumption that there is a 1-1 correspondence between B and P(B)
leads to an absurd conclusion (a contradiction), the assumption must be false.
Thus there is no 1-1 correspondence between B and P(B). That is Card(B) #
Card(P(B)). Since Card(B) < Card(P(B)), it must be the case that Card(B) <
Card(P(B)).

Before continuing on with the infinite, let’s ponder this proof for a moment. The essence
of the proof is: If something is, then it isn’t; if it isn’t, then it is. As we will see in the next
section, Bertrand Russell used essentially the same idea to reveal a crack in the very foun-
dation of mathematics. Russell was kind enough to form a popular version of his argument
- it is called the Barber Paradox. A barber (a man) puts a sign in his shop which reads, “I
shave all the men in town and only the men in town who don’t shave themselves.” Why can
this claim not be true? Notice how this riddle is similar to the above proof.

Cantor used the Hebrew symbol R, (aleph-nought) to denote the cardinality of A/. Then
in analogy with the finite case, he let 2% express the cardinality of P(N).

So how many sizes of infinity are there? To get the answer, we need only realize that
the process whereby we obtained the set P(N) from A can be repeated indefinitely. For
example, P(P(N)), the collection of all subsets of the collection of all subsets of N, has
greater cardinality than P(N). (In fact, we denote it by 22°°.) Thus THERE ARE AN
INFINITE NUMBER OF SIZES OF INFINITY.

Cantor also showed that the cardinality of the Real numbers was equal to 2%, but that
led him to ask: Is there a size of infinity between Ry and 2%0? Even with all of his genius,
this question stumped Cantor. He thought the answer was “no”, but was never able to
prove it. Mathematicians found the question so perplexing and potentially important that
it was posed to the entire mathematical community by David Hilbert in the year 1900 as
the first of 23 great unsolved problems to be solved during the 20th century. It took until
1963 to get the full answer — and the answer shocked everyone. How could that be, what
is so shocking about either a “yes, there is” or a “no, there isn’t” answer. As it turned
out, neither of those were the answer. The answer turned out to be: It doesn’t matter.
Either way will work. Either answer will give a consistent and usable mathematics (though
different from the other). So in answering the question, one is just coming to a “fork in the
road of mathematics” and is forced to go one way or the other. Both roads lead to new
mathematical places, but different places from the other path. Given that, we will stop here
at the fork, ignoring the advice of Yogi Beara, “When you come to a fork in the road, take it!”

A second intriguing question which bugged Cantor was: Is there a largest infinity? From
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the previous proof, it would seem there is no “largest infinity.” Why? Because given any
infinite set, one can take the set of all subsets of that set - which we proved is larger in size.
Cantor realized this too. On the other hand, Cantor mused — what would be the cardinality
of the Set of all Sets? Certainly this “grand-daddy of all sets” cannot be enlarged. Thus its
cardinality would have to be the largest of all infinite numbers. How is this dilemma solved?
In the same way that ostriches (supposedly) solve their problems: By burying our heads in
the sand. Mathematicians today refuse even to consider the Set of all Sets, thus avoiding the
paradox of the largest infinity. Cantor himself “solved” the problem by claiming that there
exists an infinity which lies above all the rest, but which cannot be approached through an
iterative process any more than Xy can be reached by counting through the Natural numbers.
Cantor called this supreme infinity the Absolute infinity — or just the Absolute.

But what does it mean for the Absolute to exist? Well, what does it mean for ¥, to exist,
or for that matter, what does it mean for the number “5” to exist? Would “5” exist were it
not for the presence of a natural world which contained sets with five elements? Somehow
the existence of such sets makes us a bit more secure in speaking of “5.” (Or maybe the
reader doesn’t share this paranoia.) Can the same be said for infinity — do sets with an
infinite number of elements arise in the natural world? We will reflect on this last question

ourselves before considering Cantor’s answers to the above questions.

IV. Actual Actual Infinities.

Do we live in an infinite universe? Consider the following questions:

e [s the time dimension infinite?

e [s time infinitely divisible?

e Is space infinite?

e [s space infinitely divisible?

e [s our three-dimensional space one of infinitely many three-dimensional
spheres in four-dimensional space?

e s our three-dimensional space a sphere in a four-dimensional space which is
a sphere in a five-dimensional space which is a sphere in a . . .

If the answer to any of the above questions is “yes”, then we can think of ourselves as
living in an infinite universe. However, none of the above questions has yet been answered.
That is not to say that there is no evidence (and strong opinions) on all sides. The point I
wish to make is that, as R. Rucker points out, “. . . it is entirely possible that our universe
is in every sense finite.”3! Let us briefly consider how this would be possible.

It is now generally agreed that the universe has a finite past — some 13.7 billion years.

Depending on the density of the universe, it may have a finite future as well. If the universe is

31Rudy Rucker, p. 36.
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dense enough, it will collapse back in on itself; if not (as present evidence seems to indicate)
it will go on expanding forever.

Secondly, consider the expanse of space. As noted in the introduction, a globe is a finite
— but unbounded — surface in three-dimensional space. If one follows a “straight line” (i.e.
a great circle) on a globe far enough, one returns to the starting point. Analogously, if
Einstein’s Theory of General Relativity is correct, it is possible that our universe is likewise
a three-dimensional globe in four-dimensional space. Then if one travels far enough along
a “straight line” (i.e. a beam of light), again one eventually returns to one’s starting place.
So even without a boundary, three-dimensional space may still be finite.

But are not time and space at least infinitely divisible? These questions may never be
settled, but we need not assume that space and time are infinitely divisible just because they
have a smooth feel to them. (Analogously, the motion of a motion picture and the sound
from a compact disc appear to be smooth and continuous even though in actuality both
are discrete — i.e., filled with gaps.) Support for this point of view comes from Hilbert who

speaks to several of the above questions:

When we turn to the question, what is the essence of the infinite, we must first
give ourselves an account as to the meaning the infinite has for reality: let us
then see what physics teaches us about it.

The first naive impression of nature and matter is that of continuity. Be
it a piece of metal or a fluid volume, we cannot escape the conviction that it
is divisible into infinity, and that any of its parts, however small, will have the
properties of the whole. But wherever the method of investigation into the physics
of matter has been carried sufficiently far, we have invariably struck a limit of
divisibility, and this was not due to a lack of experimental refinement but resided
in the very nature of the phenomenon. One can indeed regard this emancipation
from the infinite as a tendency of modern science and substitute for the old adage
natura non facit saltus its opposite: Nature does make jumps. . . .32

We now reveal Cantor’s answers to the questions above and also study the presuppositions
that gave rise to his answers.

V. Cantor’s Underlying Philosophy
Cantor’s answers to the questions concerning the existence of infinite things is contained

in the following quote:

The actual infinite arises in three contexts: first when it is realized in the most
complete form, in a fully independent other-worldly being, in deo, where I call it
the Absolute Infinite or simply Absolute; second when it occurs in the contingent,
created world; third when the mind grasps it in abstracto as a mathematical
magnitude, number, or order type. I wish to make a sharp contrast between the

32Tobias Dantzig, p. 237-238.
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Absolute and what I call the Transfinite, that is, the actual infinities of the last
two sorts, which are clearly limited, subject to further increase, and thus related
to the finite.*?

The information and theories of the previous section which point to (at least the possibil-
ity of) a finite world have come to light since Cantor’s time. However, it is doubtful whether
they would have influenced Cantor’s ideas concerning the existence of infinities. That is
because his reasons for believing in natural occurring infinities were tied up with his belief
in the existence of numbers.

For Cantor, the existence of any mathematical notions, in particular numbers — finite or
infinite — was contingent only upon their being internally logically consistent and being able

to fit in with the rest of mathematics. As Cantor said,

Mathematics is completely free in its development and only bound by the self-
evident consideration that its concepts must be both consistent in themselves and
stand in an orderly relation fixed through definitions to the previously formed
concepts already present and tested.*

Referring to numbers in particular, he said,

In particular one is only obliged with the introduction of new numbers to give
definitions of them through which they achieve such a definiteness and possibly
such a relation to the older numbers that in given cases they can be distinguished
from one another. As soon as a number fulfills all these conditions, it can and
must be considered in mathematics as existent and real.®®

Cantor also acknowledged that the question of existence is tied to the real world:

Secondly, reality can be ascribed to numbers insofar as they must be taken as
an expression or image of the events and relationships of that outer world which
is exterior to the intellect. So for instance, the various number-classes (I), (II),
(II) etc. are representatives of powers which are actually found in corporeal and
intellectual nature. This second species of reality I call the transsubjective or
transient reality of the integers.3¢

However, for Cantor the first kind of existence implies the second:

There is no doubt in my mind that these two forms of reality are always connected
with one another. For, a concept said to exist in the first sense also always
possesses in certain, even infinitely many, respects a transient reality . . .37

33Rudy Rucker, p. 10.
34Michael Hallett, p. 16.
35Tbid., p. 17.

36Tbid., p. 18.

37Ibid., loc. cit.
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Hallett emphasizes,

As Cantor himself says, what he proposes is a platonic principle: the ‘creation’
of a consistent coherent concept in the human mind is actually the uncovering or
discovering of a permanently and independently existing real abstract idea. . . .
for Cantor, concentration on coherence was not a means of avoiding discussion of
existence but rather a means of guaranteeing it. ‘Coherence’ may be looked upon
as a kind of minimal condition that mathematics has to respect, but according
to Cantor’s doctrines this minimal condition is an existential maximal principle:
as many things as possible exist. Thus in the case of infinite numbers, which
occupied him above all, coherent integration of the concept ‘transfinite ordinal
number’ guarantees that there must be objects which fall under it.3®

In other words, Cantor believed that the consistency of infinite numbers implied existence
of infinite numbers as a mathematical concept which in turn implied the existence of actual
infinities in the natural world. What led him to these bold conclusions? Interestingly, it was

his religious beliefs.

Georg Cantor had a religious upbringing which deeply influenced his entire life both
personally and professionally. His father, born in Copenhagen, grew up in an evangelical
Lutheran mission in St. Petersburg, while his mother was baptized Roman Catholic. His
parents were married in the Evangelical Lutheran Church of St. Petersburg, and Cantor,
along with his five younger siblings, was baptized as a Lutheran. The spiritual guidance
from his father is clearly evidenced by the letters that Georg received during his schooling at
Darmstadt and the Polytechnic Institute in Zurich. On the occasion of Cantor’s confirmation
his father wrote him a letter encouraging him to keep a truly religious spirit — an unshakable,
enduring faith in God — as his truest friend. This was to be his guard against buckling
under the resistance that he might encounter in life. Cantor kept this letter with him both
physically, and — from all indications — practically his entire life.3?

Cantor exhibited the extent to which he took his father’s advice in a letter to a fellow

mathematician where he wrote,

My theory stands as firm as a rock;every arrow directed against it will return
quickly to its archer. How do I know this? Because I have studied it from all
sides for many years; because I have examined all objections which have ever
been made against the infinite numbers; and above all, because I have followed
its Toots, so to speak, to the first infallible cause of all created things.*°

38Ibid., p. 18-19.

39Joseph Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton: Princeton
University Press, 1990, p. 272-275.

40Tbid., p. 298.
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As Hallett explains, “this understanding of what numbers are, or what sets etc. exist,
is for Cantor intimately connected with the attempt to understand God’s whole abstract
creation and the nature of God himself.”*! Cantor indicated that he was deeply influenced
by Augustine and Aquinas. For example, Cantor included the extended quote of Augustine
(p. 3) in one of his works, and himself wrote (in close similarity to that passage),

Each individual finite cardinal number is in God’s intellect both a representative
idea and a unified form for the knowledge of innumerably many compound things,

that is, those which possess the cardinal number in question. All finite cardinal
numbers are thus distinct and simultaneously present in God’s intellect.*?

As the above quote indicates, for Cantor the existence of numbers was based on God’s
ability to perceive them. But how do we know whether God can perceive them? Cantor

answers,

If T have recognized the inner consistency of a concept which points to a being,
then the idea of God’s omnipotence impels me to think of the being expressed
by the concept as in some way actually realizable. Consequently I call the being
concerned a ‘possible’ being. By this is not meant that the being somewhere,
somehow, and sometime exists in actuality, since that depends on further factors,
but only that it can exist.*?

That is, Cantor believed that it was possible for actual infinities to occur in nature,
since he had shown their inner consistency. Moreover, Cantor says elsewhere that “All
these particular modes of the transfinite have existed from eternity as ideas in the Divine

intellect.”** However do actual infinities actually exist in nature? Cantor’s answer:

Since God is of the highest perfection one can conclude that it is possible for Him
to create a transfinitum ordinatum. Therefore, in virtue of His pure goodness
and majesty we can conclude that there actually is a created transfinitum.

the transfinite not only expresses the extensive domain of the possible in
God’s knowledge, but also presents a rich and continually increasing field of ideal
discovery. Moreover, I am convinced that it also achieves reality and existence
in the world of the created, so as to express more strongly than could have been
the case with a mere ‘finite world” the majesty of the Creator following his own
free decree.

We noted above that Cantor was heavily influenced by Aquinas. In fact, Cantor agreed
with the logic of Aquinas’ argument for a finite world (p. 4). Yet Cantor came to the opposite
conclusion. How could this be? Aquinas had argued that actual infinities do not exist in

4Michael Hallet, p. 10.
42Tbhid., p. 36.

431bid., p. 20.

441bid., p. 21.

45Tbid., p. 23-24.
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the natural world because God numbered His creation and only finite numbers existed. But
Cantor points out that he has now shown that infinite numbers also exist (based on their
logical consistency), and so they too are certainly available to God. It appears then that
Cantor would have expected Aquinas to have agreed with him, had Aquinas seen Cantor’s
development of the transfinite numbers.

In summary, Cantor believed that since he had shown the concept of infinite numbers
to be logically consistent both internally and in relation to the rest of mathematics (in
particular the finite numbers), it followed that God fully understood infinite numbers. Two
inferences followed from God’s knowledge of the infinite; first, the infinite numbers do exist,
and secondly, God has used some of the infinite numbers in creation to show His majesty.

That is, actual infinities do exist in nature.

Finally, we come to the Absolute Infinite, or simply the Absolute. Recall that the Abso-
lute was conceived by Cantor in an effort to resolve the paradox caused by 1) Cantor’s proof
that any infinite set gives rise to a larger infinite set, and 2) his belief that the set of all sets
necessarily must represent the largest possible infinity. Cantor’s description of it includes
the following:

1. The Absolute “transcends the human power of comprehension, and in particular is
beyond mathematical determination.”46

2. “The Absolute can only be acknowledged and admitted, never known, not even ap-
proximately.”4”

3. The Absolute “cannot in any way be added to or diminished.”*® As such, the Absolute
is qualitatively different from all (other) infinities.

4. The Absolute cannot be approached from below through a rational constructive pro-

cess. It is “unreachable by any determination.”?

It is readily apparent that the above description of the Absolute has a theological “ring”
to it. Writers of scripture describe God in a similar fashion. For example, Isaiah records
(Isaiah 55:8-9), “For my thoughts are not your thoughts, neither are my ways your ways,
says the Lord. For as the heavens are higher than the earth, so are my ways higher than
your ways and my thoughts than your thoughts.” And Paul writes to the church in Rome
(Romans 11:33-34), “O the depth of the riches and wisdom and knowledge of God! How
unsearchable are his judgments and how inscrutable his ways! ‘For who has known the mind

of the Lord, or who has been his counselor?”” We also find, “. . . for I am God, and there is

46Ibid., p. 13.
47Tbid., loc. cit.
481hid., loc. cit.
49Tbid., p. 39.
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no other; I am God, and there is none like me . . . 7 recorded in Isaiah 46:9. Other scriptures
that attest to the transcendence and singular uniqueness of God include Job 11:7-8; 22:22;
36:26; 37:5,23; Psalms 145:3; Ecclesiastes 11:5; Isaiah 40:28; Malachi 3:6; Matthew 11:27;
and I Corinthians 2:11,16. Furthermore, 4) is closely paralleled by St. Gregory’s thought,

No matter how far our mind may have progressed in the contemplation of God,
it does not attain to what He is, but to what is beneath Him.%"

The similarities between the descriptions of God and the Absolute are not coincidental.
Cantor thought of the Absolute as representing the very knowledge of God. Hallett explains
that,

The most natural way to interpret the Absolute . . . is not as something math-
ematizable itself but as the category of everything mathematizable . . . [so]
to mathematize the Absolute would be simply a category mistake: everything
mathematizable (or numerable) is already in the realm of the finite and transfi-
nite, and the absolute is simply that which embraces all these. . . . For if the
Absolute is taken to represent the category of all mathematical forms, it repre-
sents then . . . ‘the extreme domain of the possible in God’s knowledge’. . . . as
Kowalewski described it: ‘these powers, the Cantorian alephs, were for Cantor
something holy, in a certain sense the steps which led up to the throne of the
infinite, to the throne of God.’

This association of the Absolute with God makes it finally clear why the
Absolute cannot be subjected to any attempt at rational (or in particular, math-
ematical) understanding. This is a permanent and ineradicable imperfection or
gap in our understanding. We may have a feeling or an inkling about Absolute-
ness or God, but these feelings can never be explicated in any clear intellectual
sense. This is what Cantor means when he talks of ‘the true Absolute, which is

God, and which permits no determination’.?!

With the Absolute Infinite, Cantor has taken us, as it were, full circle. The actual infinite
had been an enigma for theologians, philosophers and mathematicians alike for centuries.
Cantor not only clearly defined it, but also showed it to be both self-consistent and consis-
tent with the rest of mathematics. Moreover, he proved that there were (infinitely many)
different sizes of infinity, and even showed how these infinite numbers could be manipulated
algebraically (transfinite set theory). In so doing, Cantor removed the mystic aura surround-
ing the infinite and brought it totally within the embrace of mathematics. However, Cantor’s
own set theory eventually led him to the Absolute Infinite which, being “beyond mathemat-
ical determination,” again crossed over the boundaries of mathematics into philosophy and
theology:.

50Rudy Rucker, p. 46.
51Michael Hallett, p. 43-44.
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Maybe it is fairer to say that Cantor’s accomplishments spiraled the discussion of the
infinite up to a higher plane. Although the mathematical community was slow to accept
his ideas, Cantor’s theory is now not only firmly established as its own field of interest, but
also is indispensable for much of the rest of mathematics. According to Joseph Dauben who
wrote the definitive biography of Cantor,

[Cantor’s|] transfinite set theory represented a revolution in the history of math-
ematics. Not a revolution in the sense of returning to earlier starting points,
but more a revolution in the sense of overthrowing older, established prejudices
against the infinite in any actual, completed form. Consequently, Cantor’s trans-
finite numbers were to prove no less revolutionary for philosophers and theolo-
gians who were concerned with the problem of infinity. . . . Cantor was deeply
committed to probing the metaphysical and religious significance of his work.
In fact, for him the mathematical, metaphysical, and theological aspects of his
transfinite set theory were mutually reinforcing. Cantor was convinced that his
discoveries were not only essential for the future of pure mathematics but that
set theory could be used to refine philosophy and to support theology.5?2

VI. Implications of Infinity

We finish by considering how the infinite has, indeed, left its imprint on the physical,
rational, and spiritual dimensions of our lives. We are physical beings that live and move in
a physical world. It is natural and right that our knowledge of the world inform our actions
as we live in it. As we saw earlier, it is entirely possible that we live in a finite world. How
might this influence our behavior? It seems that our past and present careless use and abuse
of natural resources comes at least in part from false, wishful thinking that the land, oceans,
and atmosphere have infinite extent. Certainly (we like to think) any great body of water
can absorb whatever we dump into it, our supply of trees and ground water and fossil fuels
is unlimited, air pollution is just a local problem that gets blown away. Only in the honest
realization that this vast life-support system we call earth is indeed limited, will we begin
behaving properly towards it. As we begin to come to grips with the realization that we are
living on a finite planet, we have begun to explore the heavens. What is to be our attitude
toward the — possibly finite — cosmos? Only time will tell.

Time poses similar challenges. We do not yet know whether or not the universe has an
infinite future, but we can be fairly certain that each of us as individuals has but a finite
time to spend on this earth. How does this affect us? It leads some to seek the fountain of
youth in various forms. Harold Kushner points out in his book When Bad Things Happen
to Good People that it is the very finiteness of one’s lifetime that makes time valuable. C.
Keyser, an early twentieth century mathematician agrees:

52 Joseph Dauben, p. 118.
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edge of uncertainty:.
At the trial of Jesus, Pilate asked rhetorically, “What is truth?” If a philosopher of the
times had responded in the same way that former Supreme Court Justice Potter Stewart

This finiteness of life, its temporal finitude, is, for our quest, a fact of supreme
importance. For, owing to a radical insight of modern science, we know at length
that the distinction of finite and infinite is very profound, deep as the nature of
being, cleaving the world . . .

The thesis, which is simple, is not remote or difficult to grasp. It is that
the values of life are values characteristic of mortal life; it is that the temporal
finitude of life is essential to its worth; it is that, were it not for death, if life
did not end, if it were a process of infinite duration, it would be devoid of the
precious things that make us yearn for its everlasting perpetuation. . . .

Our human speech, if it were without the tender and sacred things it has from
death, would ill befit a life-loving race of mortals. The precious associations that
cluster about the words, friendship, love, husband, wife, father, mother, parent,
child, brother and sister, youth and age, flourish and bloom only in the heart of a
life that begins and ends. But it is not only in these common goods of life, not only
in the humbler joys that bless us all from day to day, that the spiritual significance
of mortality may be discerned. More subtly indeed but not less certainly is it
manifest also in the austere felicities of the higher reason: visions of the infinite,
the swift march of time, the irrevocableness of the past, the eternality of truth,
the inexorableness of cosmic law, the imperturbability of nature’s gaze upon the
struggles and strifes of men, the unbroken silence of destiny — all these solemn
beatitudes of reason and meditation derive their poignance from the transitoriness
of the life that contemplates them. Nay, whatsoever is dearest in the sphere of
outer sense — the beautiful garment of the external world, the wondrous drama of
the revolving year, alternation of day and night, of morning and even-tide, ocean’s
voice, and ‘the rhythmic sighing of the wind’; whatsoever is highest and holiest
in the sphere of inner sense — the tenderness and piety of art, the mellowness of
wisdom, the serenity and peace of renunciation, charity, mercy, and service: all
of the sacred values that constitute life a priceless boon are subtly bred in the
all-pervasive sense of its temporal finitude. Death is not the tragedy of life; it is
a limitation of life, essential to its beatitudes: the tragedy is that, if it were not
for death, life would be void of worth.?3

The infinite has also touched our lives on the rational level by changing the way we think
about truth. We will show how the infinite has been the “clay feet” of man’s statue of truth.
Indeed, Joseph Dauben states, “The question of infinity had brought mathematicians to the

9 54

answered the question “What is obscenity?” (i.e., “I can’t define obscenity, but I know it
when I see it.”), then he may have replied: “Consider geometry — there is an example of
truth.” Remarkably, geometry as developed by Euclid in the FElements some three centuries

53Cassius J. Keyser, The Rational and the Superrational, New York: Scripta Mathematica, 1952, p. 123-

54 Joseph Dauben, p. 266.
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earlier, would be considered the paradigm of truth for the next eighteen centuries as well. For
certainly, if truth was to be found, it would be found in mathematics, and if in mathematics,
most assuredly in geometry. After all, geometry was based on five postulates — self evident
truths — of the physical world, and extended to 465 theorems (proved statements) using the
infallible deductive method of proof. Moreover, the truthfulness of each of the theorems
was substantiated by empirical evidence — the world of the surveyor coincided exactly with
the world of the logician/geometer. It was, in fact, this complementary witness of truth for
which the human mind seems to yearn — a witness from both the inside and the outside —
which made the truth of geometry seem irrefutable.

What were these five postulates on which the truths of Euclid’s geometry rested? They

are:

1. Given two distinct points, exactly one straight line segment can be drawn between
them.

2. Any line segment can be extended indefinitely in only one way.
3. A circle can be drawn with any center and with any radius.
4. All right angles are equal.

5. Given any line and a point not on that line, there is exactly one line passing through
that point which will never intersect the first line - even though indefinitely extended.

Don’t these seem obvious? Euclid did not prove any of these - he laid these down as the
foundational starting point. These were truths which could not be proved, they just had to
be accepted as true. Does knowledge of these five postulates depend on experience, or are
they known a priori?®®

As noted above, once these postulates are accepted, they could be used to mathematically
prove many other geometric results. Now in order to build a mathematical argument, other
working assumptions were needed as well. Assumptions such as: 1) Things that are equal
to the same thing are equal to each other, and 2) If two things are equal, and equal things
are added to them, then what results are also equal. But these certainly seem safe.

So, starting with a seemingly firm foundation and using an equally secure process, Euclid
proved 465 geometric theorems. Then, when he gave these theorems to surveyors and builders
to use, everyone came back satisfied. There were no discrepancies - hence no second thoughts.
Is it any wonder that Euclid’s Geometry was considered for over two millennia the prime,
unquestionable example of pure truth.

¢

55 priori means roughly “independent of experience,” or “without relying on information coming to us

through the five senses.”
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Plato argued that the truths of geometry were universal, immutable, and not learned
from experience. Rationalistic philosophers such as Descartes and Spinoza agreed that the
mind can perceive truths a priori, and geometry was held up as indisputable evidence. (E.g.,
Spinoza’s favorite example of an undeniably true statement was that the interior angles of a
triangle sum to a straight line.)

Rationalism (which holds that we know fundamental truth a priori) was challenged by
John Locke and other empiricists (who believed knowledge comes via our senses), but even
they differentiated mathematics from the rest of knowledge which could only be learned
from experience. Finally, there was Immanuel Kant who wrote in Prolegomena to Any
Future Metaphysics,

We can say with confidence that certain pure a priori synthetical cognitions, pure
mathematics and pure physics, are actual and given; for both contain propositions

which are thoroughly recognized as absolutely certain . . . and yet as independent
of experience.5

Likewise, he affirmed in his Critique of Pure Reason that all of the axioms and theorems of

mathematics were truths.

However, just as Kant was writing those words, there was appearing on the horizon “a
small cloud no larger than a man’s hand.” Later, in hindsight, Morris Kline, a mathematician
and historian, could say of Kant:

His inability of conceive of another geometry convinced him that there could be
no other. . . . Kant’s boldness in philosophy was surpassed by his rashness in
geometry, for despite never having been more than forty miles from his home city

of Konigsberg in East Prussia, he presumed he could decide the geometry of the
world.?7

What was this “small cloud?” For centuries, generations of mathematicians had tried to
simplify Euclid’s geometry by getting rid of the Fifth Postulate. This postulate, commonly
known as the Parallel Postulate, has a subtle reference to infinity because it refers to lines
being “indefinitely extended.” This made it less self-evident than the other four, hence less
acceptable. One way to remove it as an assumption was to derive it from the other four (thus,
making it a theorem). Girolamo Saccheri tried this approach in the early eighteenth century
by assuming the Fifth was wrong and hoping that the deductive process would lead to an
absurdity. (Does this kind of argument ring a bell - it is again the proof by contradiction
method.) Indeed, Saccheri did show that by denying the Fifth postulate one arrived at
strange conclusions — e.g. the sum of the interior angles of a triangle depends on the size of

56Morris Kline, Mathematics, New York: Oxford University Press, 1980, p. 75.
57Ibid., p. 76.
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the triangle. This certainly seemed to be an absurd conclusion, and was all the convincing
he needed to conclude that the Parallel Postulate was, in fact, true.

But it wasn’t enough for Karl Friedrich Gauss (1777-1855). The Prince of Mathematics
realized that even though Saccheri’s strange conclusions did not coincide with our perception
of the real world, they may yet be mathematically consistent. Thus Gauss separated the
logical consistency of a mathematical system from its agreement with the physical universe.
With this bold new realization the dam broke, and many others, including Gauss’ student,
Bernard Riemann (1826-1866), developed other logically consistent geometries by starting
with a different set of postulates.

For example, what if we change the fifth postulate to say that, “Given a line and a point
not on the line, there is no line passing through the point and parallel to the line.” Does
this “non-Euclidean geometry” make sense?

It not only makes sense, but we are living on it. Instead of thinking of a drawing surface
as being a big flat plane (as Euclid did), consider the world of an ant crawling on a beach
ball (which is of course the human situation living on earth as well). For Euclid, a straight
line was the result of not turning one way or the other, but marching straight ahead. What
happens when an ant does that on a ball, or a person on the earth? Equivalently, a straight
line on the plane is the shortest distance between two points. What if a piece of yarn or
string is stretched taut from one point on a sphere to another? One would get a “straight
line” on a sphere. This explains why a flight to Europe, for example, takes a route so far
north. Tighten a piece of string on the globe — with one end at Grand Rapids and the other
at Rome — and see what happens.

Using this notion of straight lines, straight lines on a sphere are “great circles.” That
is, they are the largest-possible circles (like the circumference) on a sphere. An alternative
definition: Centers of great circles coincide with the center of the sphere. Check that in this
geometry (unlike Euclid’s) any two lines will intersect.

How else does the Spherical geometry differ from Euclid’s? As was alluded to above, one
of Euclid’s theorems was that the interior angles of a triangle sum to 180°. Consider the
triangle on the globe consisting of two perpendicular longitudinal lines from the north pole
to the equator, and then the portion of the equator between them as the third side. All
three of the interior angles are 90°, making the total 270°. So much for Spinoza’s undeniably
true statement that the interior angles of a triangle sum to a straight line! Because of this
property of a sphere, the geometry of a sphere is said to have “positive curvature” whereas
the plane on which Euclid based his geometry has “zero curvature.”

What’s the next obvious question? There are surfaces with zero curvature, and with
positive curvature, is there a surface with negative curvature - a surface where the the angles
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of a triangle sum to less than 180°7 Indeed there is. It looks like a saddle. Interestingly, this
surface has the property that given a line and a point not on the line, there are infinitely

many lines passing through the point and also parallel to the given line!

The realization that there were geometries different from Euclid’s revolutionized our
understanding of the relationship between consistency, experience, and truth. Certainly, if
a body of knowledge is true, it will both be logically consistent (i.e., contain no internal
contradictions) and it will fit with experience. But what about the converse? A board
game can be logically consistent, but it is not considered to be truth. On the other hand, a
scientific or mathematical idea can never be proved true by experience or experimentation —
it can only be proved false by a negative result. So neither internal consistency nor external
evidence by itself guarantees truth. However, what happens when a logically consistent
mathematical theory (such as Euclid’s) is verified by experience as well. Though the criteria
were not consciously applied, for two millennia mathematicians considered Euclid’s geometry
to be (the one and only) truth because of this combination of internal and external support.

The development of new geometries showed that truth cannot be so easily ascertained. In
fact it took the question of truth out of the picture. That is not to say there is no truth, but
that truth — if it does exist — cannot be determined merely by checking empirical evidence
or logical consistency. Consequently, modern scientists tend not to think of their theories as
being true or false. Instead they are thought of as models which can be used to predict how
nature will behave. If a new model gives more accurate predictions, then it replaces the old
one.

Does there exist a model which, if found, would predict all future events perfectly? That
is, is there a model which is TRUE? Scientists who believe that a true model exists, think
of our present models as approximating the true one. Scientists who don’t believe in a
true model see nature itself as the asymptotic limit of their efforts. But whether there is
a truth toward which research progresses is itself a question which lies outside science and
mathematics.

The truth of Euclid’s geometry had been assumed since it rested on a twin foundation of
logical consistency and empirical evidence. Gauss kicked out half of the foundation when he
realized that other geometries could be consistent as well. It was left for Albert Einstein to
finish the job. On May 29, 1919 a solar eclipse provided the right conditions to test Einstein’s
Theory of General Relativity. Einstein’s model — based on Riemann’s geometry in which
space has a variable curvature — showed itself to be a better predictor of natural events. A
new generation of scientists has now grown up accepting the fact that we may not live in a
Euclidean universe. In fact, NASA is presently in the process of determining the shape of
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the universe by finding whether the universe has positive, negative or zero curvature.

Thus Euclid’s geometry, the paradigm of truth, which stood for centuries like a lighthouse
on the shore, was toppled into the sea — the Parallel Postulate, with its suggestion of the
infinite, leading to its downfall. The resulting waves have rippled through other disciplines,
changing the world.

Kline sums up the situation well:

All people, prior to non-Euclidean geometry, had shared the fundamental belief
that man can obtain certainties. The solid basis for this belief had been that
man had already obtained some truths — witness, mathematics. No system of
thought has ever been so widely and completely accepted as Euclidean geometry
... Men such as Plato and Descartes were convinced that mathematical truths
were innate in human beings. Kant based his entire philosophy on the existence
of mathematical truths. But now philosophy is haunted by the specter that the
search for truths may be a search for phantoms.

The implication of non-Euclidean geometry, namely, that man may not be
able to acquire truths, affects all thought. Past ages may have sought absolute
standards in law, ethics, government, economics, and other fields. They believed
that by reasoning one could determine the perfect state, the perfect economic
system, the ideals of human behavior, and the like. The standards sought were
not just the most effective ones, but the unique, the correct ones.

Our own century is the first to feel the impact of non-Euclidean geometry
because the theory of relativity brought it into prominence. It is very likely that
the abandonment of absolutes has seeped into the minds of all intellectuals. We
no longer search for the ideal political system of ideal code of ethics but rather
for the most workable.?

Notice that the story of the discovery of non-Euclidean geometries has a close parallel
— also involving infinity. Recall Cantor’s Continuum Hypothesis which asked whether there
was a size of infinity between Xy and 2. In the same way that Euclid’s Fifth Postulate
was shown to be neither true nor false — substituting a different postulate just produced a
different geometry — Kurt Godel (1906-1978) showed in 1938 that the answer to Cantor’s
question can be either yes or no. The answer is independent of the rest of set theory — so
one is free to choose whichever answer one likes. The different choices will lead to different
(yet equally consistent) mathematics.

So in both of these areas - geometry and set theory which lies at the very foundation
of modern mathematics, the infinite has shaken up our naive understanding of truth in
mathematics. Dauben concludes,

58Morris Kline, Mathematics for the Liberal Arts, Addison-Wesley, 1967, p. 475-476.
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Cantor’s set theory had brought mathematicians to a frightening and perilous
precipice. Cantor’s infinite had shaken the traditional faith in mathematics’
everlasting certitude . . .%9

Indeed, the intrigue goes even deeper. Although geometry had been a tightly wrapped
subject - all theorems carefully deduced from the five postulates - for over 2000 years, the rest
of mathematics had been a hodgepodge. Thus in the late nineteenth century mathematicians
tried to find a solid foundation on which all of mathematics could rest. The idea of sets
seemed to be the most suitable starting point. In 1893 the German mathematician, Gottlob
Frege, began building the rest of mathematics from set theory. Just as he was finishing in
1902, Bertrand Russell sent Frege a letter in which he asked Frege a question concerning sets
which amounted to the “If it is, then it isn’t; if it isn’t, then it is” riddle. Frege realized that
Russell’s simple question kicked the foundation out of his entire 10 year work. Although
Frege published his results, he included the melancholy note, “A scientist can hardly meet
with anything more undesirable than to have the foundation give way just as the work is
finished. In this position I was put by a letter from Mr. Bertrand Russell as the work was
nearly through the press.”

Russell was by no means heartened by his discovery of a flaw in Frege’s logic. Indeed,
no one wanted to find a solid foundation for mathematics more than Russell, who set to
work with Alfred Whitehead on his own monumental work, Principia Mathematica. This
unreadable classic which builds mathematics from logic takes over 300 pages to finally prove
that 1 4+ 1 = 2 and took ten years to write. Although he found a way to mend the flaws in
the foundation which he had earlier revealed, it resulted in a mathematics which was less
beautiful and intuitive. This led the great twentieth century mathematician, philosopher,

moralist, war-protester Russell to lament:

I wanted certainty in the kind of way in which people want religious faith. I
thought that certainty is more likely to be found in mathematics than elsewhere.
But I discovered that many mathematical demonstrations, which my teachers
expected me to accept, were full of fallacies, and that, if certainty were indeed
discoverable in mathematics, it would be in a new field of mathematics, with
more solid foundations than those that had hitherto been thought secure. But as
the work proceeded, I was continually reminded of the fable about the elephant
and the tortoise. Having constructed an elephant upon which the mathematical
world could rest, I found the elephant tottering, and proceeded to construct a
tortoise to keep the elephant from falling. But the tortoise was no more secure
than the elephant, and after some twenty years of very arduous toil, I came to
the conclusion that there was nothing more that I could do in the way of making
mathematical knowledge indubitable.

59 Joseph Dauben, p. 270.
50from “Portraits from Memory”
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“What is truth?” Mathematics for two millennia proudly gave answer, but now is humbly

silenced — by the infinite.

Finally, we consider the oft made claim that God is infinite. The infinity of God is often
invoked by writers and speakers in order to lend support for a supposed implication of divine
infinity. An example of this comes from William Barclay’s Testament of Faith. Barclay asks
the question “But why in the end had Jesus to die?” He answers that it was necessary for
Jesus to go to the Cross to show the extent of His love:

Jesus reveals to men the illimitable, the unconquerable, the literally infinite love
of God. . . . The pain and the agony of the Cross was the price that Jesus had
to pay, the sacrifice he had to make to set before men the love of God.%

Notice that Barcley’s argument rests, at least in part, on the assumption that the concept
of “the literally infinite love of God” is both meaningful and true.

But are such inferences valid? The question we raise is not whether the statement “God
is infinite” is true, but whether it is meaningful. Already we have seen Weyl, Augustine,
Aquinas, Locke and Cantor claim that God was infinite — yet each was saying something
different in making the statement. To say that God is infinite could be referring to some
attribute of God such as His omnipresence (Locke), or it could be making an absolute
statement about God’s being (Aquinas), or it could be contrasting God’s nature with human
nature (Weyl), or it could be linking God’s knowledge to the set of (natural) numbers
(Augustine), or it could be associating the mind of God with the Absolute Infinite (Cantor).
Other possibilities (using the dictionary definitions) include meaning that God is unbounded,
immeasurably large, or has endless duration.

The statement, “God is omnipresent,” for example, is precise and unambiguous since the
word “omnipresent” has a single meaning. Thus whatever is implied by being omnipresent,
would be true of God. However, since the word “infinite” has multiple meanings, inferences
from the statement “God is infinite” are not automatic. This problem arises generally. For
example, consider the argument: The set of real numbers between 0 and 1 ([0, 1]) is infinite
and infinite means being unbounded, so the set [0, 1] is unbounded. The conclusion is false.
The problem is that two different meanings of the word “infinite” were used.

Similarly, saying that God is infinite is ambiguous. This need not keep one from making
the claim, but it should make one wary of drawing inferences from the statement as is
often done. That is, arguments of the form “God is infinite, therefore . . .” should be
viewed skeptically. This need not limit our description of God, since any particular meaning

61'William Barclay, Testament of Faith, Oxford: Mowbray, 1975, p. 51.
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of infinity which might be applied to God can still be expressed with other words — e.g.,
omniscience, omnipotence, omnipresence, and singular uniqueness.

An example where an infinity argument concerning God is used more cautiously comes
from Cassius Keyser whose perspective on death we considered earlier. Keyser argues that
the academic world is mistakenly holding onto the antiquated notion that the whole is greater
than the part. This, he explains, is true without exception in the world of the finite, however

the other component — the world of infinite — is composed of wholes for which,
without exception, the proposition is false; the discovery that the latter world,
the world of infinite wholes, is par ezcellence the domain of reason, and that, in
respect of content, it is immeasurably richer than the world of finite wholes: that
discovery I judge to be second in importance, for the future of thought, to no
event in the history of mankind.5?

He continues with an example:

Not long ago in a western city of the United States a great orator, speaking on
the dogma that the persons of the Trinity are each Almighty and yet together
constitute but one Almighty, speaking of the doctrine that each of the Persons is
equal to the One composed by all of them, evoked general applause from a vast
audience by characterizing the venerated creed as ‘infinitely absurd’.

Keyser then shows that when dealing with infinite sets, “three” can constitute “one.”
Consider the sets A={1, 4, 7,10, . . . }, B={2,5,8,11,. .. }, and C={3,6,9, 12, . .. }.
As we have already seen, A, B and C all have the same cardinality as the natural numbers
N={1, 2, 3,4, . . . }, yet the union of A, B and C together equals the natural numbers.

Keyser, in a blend of humility and pride, then concludes:

Have we proved that there is a Trinity composed of three components related
to one another and to the Trinity as the dogma asserts? No. We have proved
that the conception of such a Trinity, instead of being rendered absurd by a so-
called axiom having no application to infinite manifolds, is rigorously thinkable,
perfectly possible and rational, and that our brilliant orator was indeed in this
instance an ass.

The most important point that Keyser makes is that (as we have seen) the infinite is
qualitatively different from the finite. It obeys other rules — rules that often do not follow
our intuition. This raises the question: Since our daily comings and goings occur in a finite
world, and since the infinite, being qualitatively different from the finite, is anything but
natural and intuitive, how is it that we have even discovered the concept? Moreover, why

are we inclined to dwell on it; why the fascination?

62Cassius Keyser, p. 99-101.
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Maybe it is because we actually do live in an infinite universe, so our mind’s attempt to
understand infinity is just part of its attempt to understand our world. We might then agree
with Stephen Weinberg, a Noble-laureate in physics, who ends his classic The First Three
Minutes saying,

The more the universe seems comprehensible, the more it also seems pointless.
But if there is no solace in the fruits of our research, there is at least some
consolation in the research itself. . . . The effort to understand the universe is

one of the very few things that lifts human life a little above the level of farce,
and gives it some of the grace of tragedy.®?

If the physical universe is all there is, then it could be argued that our tendency to believe
in a supernatural being is just a perversion (or exploitation) of our sense of the infinite.

On the other hand, maybe, as Thomas Aquinas argued (p. 4), our sense of the infi-
nite implies the existence of an infinite being. In this case our fascination, yet lack of full
understanding, could be the result of “seeing through a glass darkly.”

Finally, it is possible that our intrigue with the infinite is the result of a purposeful imprint
on our minds by the Infinite One. For as we noted earlier, grappling with the infinite, while a
testimony to the dignity we possess, produces a certain humility by clarifying our relationship
to our world and our Creator. Isn’t this what the writer of Ecclesiastes meant when he wrote,

“He has put eternity into man’s mind . . . ”

63Steven Weinberg, The First Three Minutes, New York: Basic Books, 1977, p. 155.
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